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The generalized method of cells (GMC) is used to study the influence of pore geometry on
the effective elastic properties and inelastic response of porous materials. Periodic
microstructures with four distinct pore geometries are studied and the results for effective
elastic properties are compared with several other available models and experimental
results. Predictions for the inelastic response of porous alumina are presented for tensile
loading, as a function of pore geometry and pore volume fraction, with the inelastic
behavior of the bulk material modeled using a unified visco-plasticity theory. All results are
presented for discrete pore shape and discrete porosity. It is shown that pore geometry can
have a significant influence on both elastic and inelastic response, that pore geometry can
be associated with parameters from other models, and that the generalized method of cells
is an efficient, flexible and reliable method of analysis for such problems. C© 1999 Kluwer
Academic Publishers

1. Introduction
The subject of porosity has received renewed atten-
tion in recent years. This is true for ceramics, metals
and composites. Reasons for studying porosity include
the fact that materials are often porous as the result of
processing, that naturally occurring materials such as
wood and bone are porous, and that advantageous engi-
neering properties may be realized by taking advantage
of porosity. Possible advantageous properties might in-
clude specific stiffness and strength, improved thermal
conductivity, and resistance to crack growth. Materials
may be porous because the fabrication process results in
pores between particles that were not fully consolidated
or they may be porous by design in order to affect a spe-
cific property. Materials that are porous by design are
often referred to as cellular solids. Porous media typi-
cally have lower percent porosity than cellular solids.
For all materials, it is desired to know the mechanical
and physical properties as a function of the type(s) of
porosity (pore geometry) and the degree of porosity ex-
pressed as a volume fraction or as relative density, i.e.,
the ratio of the density of the porous media to that of
the nonporous solid. The focus of the present paper is
directed toward porous media; the methods of analysis,
however, would also be appropriate for cellular solids.

Recent review articles on porous media include those
by Rice [1, 2]. Cellular solids are reviewed in the book
by Gibson and Ashby [3]. It is interesting to note that
there have been two fundamental approaches to the
study of porous media. These approaches can be di-
vided into those of the mechanics community and those
of the materials community. The mechanics community
has tended to consider a specific shape pore (most often
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spherical) and then develop analytical solutions for the
properties as a function of the pore volume fraction.
In contrast, the materials community has tended to ob-
tain experimental results for the properties as a function
of porosity and then found the “best fit” curve where
the parameters are associated with the pore geometry
or method of fabrication. It is also interesting that a re-
view of the papers in the mechanics literature and those
in the materials literature indicates that the interaction
between the two communities is somewhat limited.

The majority of mechanics papers directed to-
ward mechanical properties of porous media are con-
cerned with elastic properties (e.g., Budiansky [4],
MacKenzie [5], Nemat-Nasser and Taya [6]). Previ-
ous studies on inelastic response are those by Chu and
Hashin [7] who used the composite spheres model to
study the response of porous steel under dilatational
loading. Carroll and Holt [8] and Butcheret al. [9]
considered compressibility and dynamics effects, and
Aboudi [10] used the original method of cells to study
inelastic normal, dilatational and shear response of
porous, elastic perfectly-plastic and elastoplastic work-
hardening solids. All of the above papers are concerned
with spherical pores (or approximations to spherical
pores in the case of the method of cells).

The goal of the present work is to assess the applica-
bility of the generalized method of cells (GMC) (Paley
& Aboudi [11], Aboudi [12]) for calculating the effec-
tive elastic properties and inelastic response of a porous
material as a function of pore geometry and percent
porosity. The four pore shapes selected for considera-
tion are: cylinder, cube, sphere and cross. Comparisons
will be made with previously published experimental
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data as well as with several other theoretical models. For
the purpose of comparison, GMC is used to predict the
effective behavior of aluminum oxide, Al2O3, a porous
ceramic whose effective elastic behavior is well docu-
mented in the literature, and a glass that was die-pressed
and sintered from a glass powder or frit. Predictions for
nonlinear response are presented for the intermetallic
compound IC-50 (Ni3Al), a nickel aluminide (Ni-Al
23., Hf.5, B.2) at %.

All results presented in this paper are for periodic
structures with discrete pore shape, stacking arrange-
ment and porosity, and it is assumed that these parame-
ters do not change during loading. However, it is impor-
tant to note that the methodology presented has much
broader capabilities. It is possible to model any shape
pore that can be described in the cartesian geometry of
the unit cell. Different stacking arrangements and com-
binations of pore shapes can be modeled as long as the
microstructure is periodic at some level or a statistical
approach is employed. In addition, the model can be
extended to changing pore structure (shape and stack-
ing arrangement) as a function of load history through
the incorporation of finite deformation effects.

Figure 1 GMC representative repeating unit cell for 2-D.

Figure 2 Cylindrical pore.

2. The generalized method of cells
The generalized method of cells (GMC) is a computa-
tionally efficient and robust micromechanics analysis
method for heterogeneous materials including porous
media and composites. Thermal, mechanical (stress or
strain control) and thermo-mechanical load histories
can be imposed and a variety of constitutive laws for
elastic and/or inelastic response of the constituents may
be utilized. The constitutive model used for inelastic re-
sponse in the present study is the Bodner and Partom
[13] viscoplastic model. GMC is an extension of the
original method of cells (Aboudi, [14]) which was used
previously to study the inelastic response of porous
media for one specific pore geometry (Aboudi [10]).
Since the CTE of a porous, but otherwise homogeneous,
medium is not influenced by porosity, thermal effects
are not considered in this paper.

GMC considers a material that possesses a periodic
structure such that a repeating, representative volume
element can be identified in the form of a unit cell.
A two-dimensional representative unit cell is shown
in Fig. 1 and the three-dimensional unit cells to de-
scribe each of the four pore geometries considered in
this paper, cylinder, cube, cross and sphere, and shown
in Figs 2 to 5.

The 2-D representative repeating cell consists of
Nβ × Nγ subcells whereas the 3-D representation con-
sists ofNα × Nβ × Nγ subcells. Each one of these sub-
cells can be occupied in general by any viscoplastic
material. The constitutive law of such a material can be
written in the form

σ = C(ε − ε I ) (1)

whereσ is the stress vector, andε, ε I are the total
and inelastic strains, respectively, andC is the elas-
tic stiffness matrix of the material. The subcells corre-
sponding to pores were represented as a linearly elas-
tic material with very small Young’s modulus,E, and
relatively large Poisson’s ratio,ν, resulting in a very
small shear modulus through the isotropic relationship
G = E/2(1+ ν).

The constitutive law was represented as a relationship
between the rates of the field variables for use with the
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Figure 3 Cubic pore.

Figure 4 Cross shaped pore.

Figure 5 Spherical pore.

viscoplastic model. This tangent formulation can be
established by multiplying and dividing the inelastic
terms in (1) by the scalarsε̇ wheres is the deviatoric
part ofσ . The resulting constitutive law is

σ̇ = CVPε̇ (2)

whereCVP denotes the instantaneous stiffness tensor
of the viscoplastic phase. It is given by:

CVP
i jkl = Ci jkl − Ci jabε̇

I
abskl

srt ε̇r t
(3)

In the special case of an isotropic, viscoplastic material,
the termCi jkl ε̇

I
kl can be written in terms of a flow rule

function,3, in the form:

Ci jkl ε̇
I
kl = Ci jkl3skl = 2µ3si j (4)

Using (4), (3) can be written:

CVP
i jkl = λδi j δkl + µ(δikδ j l + δi l δ jk)

− 2µ
smnε̇

I
mn

srt ε̇r t

si j skl

spqspq
(5)

whereλ andµ are the Lam´e elastic constants, andδi j

is the Kronecker delta.
The basic micromechanical GMC analysis consists

of four steps as follows:

1. Identification of the repeating unit cell.
2. Definition of the macroscopic average stressesσ̄

and strainε̄ from the corresponding microscopic quan-
tities (homogenization).Referring to Fig. 1 (for the 2-D
case), we have:

σ̄ = 1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβ lγ σ̄
(βγ ) (6)

ε̄ = 1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβ lγ ε̄
(βγ ) (7)

whereσ̄ (βγ ) andε̄(βγ ) are the average stress and strain
in the subcell (βγ ).

3. Imposition of continuity of displacements and
tractions at the interfaces between the subcells, as well
as between the repeating cells.These continuity condi-
tions establish, in conjunction with equilibrium within
each subcell, the relationships between the microscopic
total and inelastic strains with the macroscopic strains
via the mechanical and inelastic concentration tensors
(localization). It can be shown (Paley and Aboudi [11])
that the strains in the subcells are given in terms of the
macroscopic strains and the subcells inelastic strains in
the form:

ε̄(βγ ) = A(βγ )ε̄ + D(βγ )ε I
s (8)

whereA(βγ ) and D(βγ ) are the appropriate concentra-
tion tensors, andε I , are the inelastic strains in all sub-
cells.

4. Derivation of the resulting overall (macroscopic)
constitutive equation of the multi-phase media.The re-
sulting inelastic constitutive law is given by:

σ̄ = B∗(ε̄ − ε̄ I ) (9)

In this constitutive equationB∗ is the effective elas-
tic stiffness tensor of the material which is given in a
closed-form manner.

B∗ = 1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβ lγC(βγ ) A(βγ ) (10)

The inelastic strain tensor has the form:

ε̄ I = −B∗−1

hl

Nβ∑
β=1

Nγ∑
γ=1

hβ lγC(βγ )(D(βγ )ε I
s − ε̄ I (βγ ))

(11)
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Once the strain concentration tensors, mechanicalA(βγ )

and the inelasticD(βγ ), have been determined, it is pos-
sible to establish the microscopic stress in the subcell
in the form:

σ̄ (βγ ) = C(βγ )[A(βγ )ε̄ + D(βγ )ε I
s − ε̄ I (βγ )] (12)

For elastic response, the stresses are:

σ̄ (βγ ) = Q(βγ )σ̄ (13)

whereQ(βγ ) is the mechanical stress concentration ten-
sor given by

Q(βγ ) = C(βγ ) A(βγ ) B∗−1 (14)

It is also possible to establish the instantaneous con-
stitutive law that governs the overall inelastic response
by employing the corresponding instantaneous laws of
the constituents given by (2) directly in GMC. Alterna-
tively, one can multiply and divide the inelastic terms
in the rate form of (9) by the scalar̄s˙̄ε wheres̄ is the
deviatoric part of ¯σ . This readily provides the follow-
ing relation between the rates of the total and inelastic
strains via the overall instantaneous stiffness tensor.

˙̄σ = B∗VP˙̄ε (15)

where

B∗VP
i jkl = B∗i jkl −

B∗i jab
˙̄ε I

abs̄kl

s̄r t ˙̄εr t
(16)

The constitutive law (9) can be employed to predict the
nonlinear behavior of porous media from the knowl-
edge of the material properties of the medium and tak-
ing the pore to have near zero stiffness.

3. Pore geometry
Since GMC includes a description of the micro-geo-
metry of a subvolume of the material, it is possible
to describe various pore shapes in some detail. There
were two objectives in the selection and design of pore
shape. First, the proportions of each shape had to remain
constant even as the porosity changed. This provided
a definition of each shape, independent of the poros-
ity, and made it is possible to examine how changes
in the shape of the pore alone affected the properties
of the porous material. The second objective was to
maintain the physical sense of the pore, keeping in mind
that there is a limiting value of porosity for each pore
shape, i.e., when the outer edge of a pore is extended to
the sides of the unit cell. This can be seen in the case of
perfectly spherical pores in a square packing arrange-
ment. In the limiting case, the matrix material would
fill the cusp shaped areas between the spherical pores.
At this porosity, the spheres would touch each other at
one point on each face of the unit cell, and the pores
would be considered a continuous phase. Beyond this
porosity, the spherical shape of the pore would be lost
as neighboring pores merge. Mathematically, the max-
imum pore volume fraction which can be achieved by
spherical pores, maintaining the pore shape, is 0.5236.

Similarly, the maximum volume of a cusp shaped pore
in the unit cell, which results from the stacking ofsphe-
rical particles, the reverse of spherical pores, is 0.4764.

The three dimensional version of the generalized
methods of cells uses rectangular subcells to describe
each pore shape (see Figs 2 to 5), but since it calcu-
lates average values across the pore boundaries, the
corners in the subcells do not produce stress concen-
trations or singularities. This means that GMC may not
‘see’ a cube when the pore is drawn as a cube; how-
ever it does distinguish between shapes based on rel-
ative dimensions. General characteristics of real pore
shapes were included when possible in the GMC de-
scriptions. For example, a cubic pore could physically
extend through the entire range of porosity, and in the
case of our spherical pore, a “cubical” approximation to
a sphere was constructed which reached its maximum
volume at 0.5236. (which is the maximum for a sphere
in a cube). The cross shaped pore, which might approx-
imate a cusped shaped pore, does not match the corre-
sponding maximum volume for the pores which result
from packing spherical particles. More complicated de-
signs are required to produce a symmetric shape which
has its maximum pore volume fraction of 0.4764. It is
not clear which shape, in a rectangular geometry, would
best approximate a cusp shaped pore. (See Qianet al.
[15], for a discussion of variations in cusp shapes.) The
cross shaped pore is used because of its simple geo-
metric shape and because it has a maximum porosity
between that of the cubic and spherical pores, which
makes it useful in comparison. Thus, these pore shapes
are intended to span a range of shapes, but not specifi-
cally model their namesakes.

The cylindrical pore is not a pore in the usual sense,
but rather a long cylindrical void. The three remaining
pores are traditional inclusions. The three shapes, la-
beled cube, cross and sphere, are used to approximate
various void shapes which occur either naturally, as a
result of incomplete consolidation during processing, or
intentionally, in a process designed to produce a porous
material. The regular distribution of pores throughout
the matrix material approximates a material that is sta-
tistically homogeneous and effectively isotropic. The
four pore shapes as modeled in GMC are described in
the following.

3.1. Cylindrical pore
The cylindrical pore, with a square cross section
(Fig. 2), is used to approximate the voids which oc-
cur during the consolidation of a layered material. The
main axis of the cylinder is aligned in the loading di-
rection, and the pores are arranged in a square stacking
sequence. The resulting material is effectively trans-
versely isotropic. This pore is described in GMC by a
unit cell divided into 9 subcells. Each subcell runs the
depth of the unit cell. The subcell that lies along the
main axis of the cylinder is the void. The remaining
subcells are of the non-porous material.

In this case, the pore volume fraction can be calcu-
lated by the relative area of the pore across the face
of the unit cube. This area of the unit cell is normal-
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ized to one, and the pore volume (area) fraction can be
expressed as

Pcyl = a2 (17)

wherea is the dimension of the square cross-sectional
area. This pore can increase in size to fill the unit cube
exactly so the pore volume fraction can range from
0≤ Pcyl ≤ 1.

P = 1 is, of course, a degenerate case.

3.2. Cubic pore
The GMC unit cell for the cubic pore (Fig. 3) is divided
into 27 subcells, 3×3×3. The center subcell (the pore)
is a cube, with dimensions,a× a× a. The dimension
a will be referred to as the characteristic dimension.

The volume of the unit cell is normalized to one, so
that the porosity,Pcube, is given by

Pcube= a3 (18)

The second length is defined asb = (1− a)/2. In the
limiting case whereb→ 0, and (a→ 1), thus

0≤ Pcube≤ 1 (19)

P= 1 is the degenerate case.

3.3. Cross pore
This pore is modeled by a unit cell divided into 125
subcells, 5×5×5. The center layer of subcells models
the pore as a cross with equal lengths for each of the
legs and the center (Fig. 4). The pore is symmetric about
all three axis, forming a three dimensional cross, or
cruciform shape. The unit cell is again normalized to
unit volume, thus the porosity is given by

Pcross= 7a3 (20)

The second length is given byb = (1− 3a)/2. In the
limiting case whereb→ 0, (a→ 1/3), the porosity is
within the range

0≤ Pcross≤ 0.295 (21)

Equality holds on the right-hand side of (21) when the
pores from adjacent unit cells are in contact.

3.4. Spherical pore
This pore (Fig. 5) is modeled by a unit cell divided into
343 subcells, 7×7×7. Again a characteristic dimension
a is used to define the pore dimensions and proportions.
The resulting pore volume fraction is

Psph= 65.45a3 (22)

With the unit cell normalized to volume= 1, the second
length isb = (1−5a)/2, and for this pore shape, in the
limit as b→ 0, (a→ 1/5) and thus

0≤ Psph≤ 0.5236 (23)

Again, equality on the right-hand side of (23) holds
when pores from adjacent unit cells are in contact.

4. Results and discussion
4.1. Comparison with experimental results
Comparison with experimental data previously pre-
sented in the literature is invariably limited by the type
of tests conducted and the assumptions made in evaluat-
ing the data acquired. Beam deflection, tension, torsion,
hydrostatic loading, resonant frequency and wave pro-
pagation methods have all been used. Data have been
acquired as deflections, strain gage measurements, light
reflection and ultrasonic velocities. Invariably it is as-
sumed that the porous material is homogeneous and
isotropic for the purpose of extracting material pro-
perty values from the theory associated with each type
of test. The following comparisons are made with these
caveats noted.

The effective elastic properties were predicted for
porous alumina (Al2O3) using the bulk properties:
E= 386 GPa,G= 163 GPa, andν= 0.19 as input to
GMC. Results for the effective Young’s modulus,E,
effective Poisson’s ratio,ν, and effective shear modu-
lus,G, for cylindrical, cubic, spherical and cross pores
are presented as a function of porosity,P, in Figs 6–8.
The Young’s modulus results (Fig. 6) and the shear
modulus results (Fig. 8) include comparison with the
experimental data of Coble and Kingery [16] who mea-
sured Young’s modulus using transverse bending tests
and shear modulus using torsion tests. Beam deflec-
tions were measured in the bending tests and strains
were measured in the torsion tests utilizing a light
source reflected from sapphire mirrors mounted on the
sample.

Coble and Kingery also presented data for Poisson’s
ratio, but their values were based uponaveragedata
and, as a result, the Poisson’s ratio for zero porosity
(ν= 0.27) was 50% higher than the value for isotropic
response (ν= 0.18). Because of this the reported ex-
perimental data are not presented in Fig. 7. Coble and
Kingery did report a 50% decrease in Poisson’s ratio as
porosity increases from 0.0 to 0.5.

For the theoretical predictions, the Young’s modulus
and Poisson’s ratio were predicted directly from GMC
and the shear modulus was obtained using these val-
ues and the isotropic relationshipG= E/2(1+ ν). In
all cases, results are presented only for porosities in the
range possible for each particular pore shape as dictated
by the GMC approximation. When applying GMC to
porous materials it is necessary to assign material prop-
erties to the pore. For all results presented in this paper
the pore properties were taken to be:E= 0.001 MPa,
G= 0.0004 MPa andν= 0.25. These values insured
that the elastic stiffnessCi j are very small for the pore.

It is evident from the figures that an increase in poro-
sity results in a degradation in all three elastic proper-
ties, with one exception, Poisson’s ratio for cylindrical
pores (Fig. 7). The results clearly are also a function
of pore geometry. The cylindrical pore predictions give
the smallest degradation of property and the predictions
based upon the cross pore shape result in the largest
degradation. The cubic and spherical pore predictions
are intermediate, with the spherical pore always ex-
hibiting more degradation than the cubic pore. There
are significant differences in the predictions (more than
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Figure 6 Effective Young’s modulus for porous Al2O3.

Figure 7 Effective Poisson’s ratio for porous Al2O3.

100% in some cases) depending upon the pore geome-
try. It is also evident that whereas the cylindrical pore
exhibits a linear dependence on porosity, the depen-
dence is nonlinear for all other pore shapes. The Coble
and Kingery experimental results for Young’s modulus
compare most favorably with the predictions for spher-
ical pores. There is excellent agreement between the
spherical pore predictions and experimental values up
to a porosity of 0.4. AboveP= 0.4, the agreement is
good but not excellent. This agreement between theory
and experiment for spherical pores is consistent with
the indication in Ashby and Jones [17] that densifi-
cation of ceramic powder through sintering results in

porosity primarily in the form of small, nearly spherical
pores. The shear modulus comparisons in Fig. 8 indi-
cate good correlation with the spherical pore for small
P and even better correlation with the cross pore for
0.15<P> 0.246.

The independence of Poisson’s ratio on porosity for
the cylindrical pore geometry (Fig. 7) is a special case
in which the effective property is constant and equal
to the property of the matrix. This same result can be
shown directly from Hill’s relations (Hill [18]) for ef-
fective elastic properties of two-phase materials with
one phase being a void (Benveniste [19]). The predicted
decrease in Poisson’s ratio as porosity increases for the
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Figure 8 Effective shear modulus for porous Al2O3.

other pore shapes is consistent with the experimental
results of Coble and Kingery [16]. As mentioned pre-
viously, they reported a 50% decrease in Poisson’s ratio
for P= 0.5. Greenet al. [20] reported only a decrease
of approximately 30% for porous alumina atP= 0.5.
Ashkinet al.[21] reported a small increase in Poisson’s
ratio of porous silica as porosity increased fromP= 0
to P= 0.5 and then a large increase in Poisson’s ra-
tio for higher porosity. Their results were based upon
measurement of longitudinal and shear wave veloci-
ties and the isotropic material property relationship. It
would appear that measurement of the dependence of
Poisson’s ratio on porosity requires direct and accurate
measurement of the axial and transverse strains in a

Figure 9 Effective bulk modulus for porous glass.

tension test. The authors have not found such a set of
results in the literature.

Walshet al. [22] obtained experimental results for
bulk modulus as a function of porosity by measuring
compressibility on a series of glass specimens. Differ-
ent porosities were produced by varying the sintering
temperature for sintered glass powder. The authors re-
ported that microscopic inspection of the specimens
after sintering indicated that the pores were prima-
rily spherical, with some pores “slightly ellipsoidal”.
Young’s modulus,E, of the bulk glass was deter-
mined to beE= 10.875× 106 psi and Poisson’s ra-
tio ν= 0.23. Fig. 9 shows that the GMC predictions
(spherical pores) for the bulk modulus as a function of
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Figure 10 Young’s modulus: GMC and exponential.

porosity are slightly lower than the measured values,
but generally agree with the experimental results over
the range for which predictions are possible. Compari-
son of the bulk modulus in this case represents a direct
comparison of theory and experiment without the need
for any assumptions as to the isotropy of the material or
the value of other material constants such as Poisson’s
ratio.

4.2. Comparison with empirical models
4.2.1. Exponential form
Spriggs [23] proposed that the effect of porosity on the
effective elastic moduli of ceramic materials could be
modeled using an exponential expression of the type
suggested by Duckworth [24] and Knudsen [25] as a
modification on a form used by Ryshkewitch [26] to
describe the effect of porosity on strength. The general
form of the equation for an effective modulusM∗ of
the porous material is an exponential of the form

M∗ = M0 e−bP (24)

whereM0 is an elastic modulus of the non-porous ma-
terial, P is the volume fraction of porosity, andb is an
empirical constant. This relation has provided a good
approximation for effective properties at lower range of
porosities, i.e.P≤ 0.4 (see Spriggs [23], Spriggs and
Brissette [27], and Rice [1]).

After examining experimental data on polycrys-
talline alumina from several investigators, Spriggs [23]
observed that the constantb ranges from 4.08 to 4.35
for hot-pressing; 3.44–3.55 for cold-pressing and sin-
tering; andb∼ 2.73 for slip casting and sintering. Since
different processing techniques can be associated with
different pore structures, this suggests a connection be-
tween effective moduli, pore shape and volume frac-
tion, and processing technique.

GMC predictions for the Young’s and shear mod-
uli were fit to curves of the exponential form using a
modified least squares method to determine theb value
corresponding to a best fit for the three included phase
pore models. These curves and theb values are shown
in Figs 10 and 11. Note that the spherical pore results,
b= 2.576 for E andb= 2.405 for G correspond very
well with the value of 2.73 identified by Spriggs for slip
casting and sintering, whereas the cross pore values,
b= 3.209 for E andb= 2.550 forG, are more consis-
tent with Spriggs’ value for cold-pressing and sintering.
Typically, Poisson’s ratio has not been described by an
exponential relationship. However, if the porous ma-
terial is assumed isotropic, then theG= E/2(1+ ν)
relationship can be used to determineν.

It is further noted that the results of this curve fitting
the GMC results to exponential forms, givesb parame-
ter values that are very similar forE andG. If E andG
vary in the same manner with porosity and the porous
material is isotropic, then Poisson’s ratio is indepen-
dent of porosity. This is consistent with the results of
Ashkinet al. [21] discussed previously.

4.2.2. Minimum solid area model
Rice [1, 2] associated the effective properties of porous
media with pore shape and packing arrangement by not-
ing that these geometric characteristics are related to the
minimum area that transfers load. For one-dimensional
loading, this area is the minimum solid area normal
to the stress. Under the assumptions of the minimum
solid area model, the ratioM∗/M0, equals the minimum
solid area (MSA) for a given pore shape and packing
arrangement, i.e.

M∗

M0
=MSA (25)
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Figure 11 Shear modulus: GMC and exponential.

Because the shapes of the three inclusion pores (cube,
cross and sphere) are clearly defined, it is possible to
develop exact minimum surface area models for these
three pore shapes. Specifically, for loading along a prin-
ciple axis, the minimum solid area is the cross section
of the unit cell less the largest cross section of the pore.

This minimum solid area modeling is applied to the
GMC representation of the three inclusion pore shapes
as follows:
Cubic pores: The minimum solid area (MSA) for the
cubic pore is the area assigned the matrix material in the
center cross section of the unit cell. This area is given
by

MSAcube= 1− a2 (26)

and witha= P1/3 from (18), this can be written in terms
of porosityP as

MSAcube= 1− P2/3 (27)

Cross shaped pores: Similarly, the minimum solid area
for the cross shaped pore is

MSAcross= 1− 5a2 (28)

and with a= (P/7)1/3 from (20), given in terms of
porosityP as

MSAcross≈ 1− 1.36P2/3 (29)

Spherical pores: Finally, for the spherical pore

MSAsph≈ 1− 18.8a2 (30)

which, witha = (P/65.45)1/3 from (22) becomes

MSAsph= 1− 1.15P2/3 (31)

These equations are similar in form to those discussed
by Rice [26]. It is clear from Equations 25, 27, 29 and 31
that the minimum solid area at a fixed porosity is largest
for the cubic pore and smallest for the cross shaped
pore. Also the rate of change in solid area (decreasing)
with respect to increasing porosity is the greatest for
the cross shaped pore.

Fig. 12 shows that the GMC predictions for elastic
modulus are in excellent agreement with those of Equa-
tions 27, 29 and 31 for the three inclusion pore shapes.

Rice [1, 28] demonstrates that Spriggs’ exponential
model provides a good approximation to the solid area
model.

The connection between the minimum solid area
model and the exponential form can be established by
noting that the first term two terms of a linear expansion
of the exponential form can be written as

M∗

M0
= e−bP ≈ 1− bP (32)

which is valid forbP¿ 1.
Each of the minimum solid area relations (27), (29)

and (31) can be rewritten in the same form as (32), i.e.

M∗

M0
= 1−

(
α

P1/3

)
P (33)

with α= 1.0, 1.15, 1.36 for the three different pore
shapes. This suggests that forαP2/3 small enough, this
can also be written as an exponential, i.e.

M∗

M0
≈ e−β(P)P (34)

In this case though, the parameterβ(P) = α/P1/3 is
not a constant but depends on the porosity. For small
changes in porosity this can be further approximated
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Figure 12 Comparison of minimum solid area model with GMC.

Figure 13 Comparison of GMC, exponential and minimum solid area for cubic pore.

by the exponential form with a constant value of the
parameterb.

When comparing pores of different shapes at various
porosities, a higher value ofb implies that the support-
ing minimum solid area decreases more rapidly with
increasing porosity. General results, predicted by the
minimum solid area model and approximated by the
exponential form, which are applicable to this work,
are that spherical pores in a cubic stacking arrange-
ment will have ab∼ 3, (this corresponds to our spheri-
cal pore), solid spheres in a cubic stacking arrangement
haveb∼ 5 (this might be a limiting case of the cross
pore) and cylindrical pores aligned in the loading di-
rection haveb∼ 1.4.

Fig. 13 shows that there is excellent correlation be-
tween the minimum solid area model and GMC over
the full range of porosity. The exponential curve com-
pares reasonably well, however, at higher porosities the
exponential curve diverges from the other two models.
This is consistent since the exponential approximation
is only good for smallbPvalues and was proposed only
for porosities below about 0.4.

Rice [2] also examined a wide range of experimental
data from the literature with the goal of determining
trends that are valid over several sets of data. When
possible, he used theb value calculated by the original
investigators. In most cases data were obtained graphi-
cally andb values were fit visually. For ceramics, Rice
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observed the following: (a) the average value ofb over
all processing techniques isb ∼ 4; (b) hot pressing,
iso-pressing and colloidal pressing give higherb values
than cold-pressing. This is attributed to the increased
packing densities achieved by the former processing
techniques; higherb values are associated with more
densely packed materials.

4.3. Comparison with theoretical models
Most of the existing analytic models for the effective
properties of porous materials have been developed as
a special case of the problem of an inclusion phase in a
matrix. A representative element of a two-phase mate-
rial is analyzed and the results obtained are extended to
the continuum material, attempting to take into account
the distribution of the included phase and interactions
between included phases. Two phase materials are het-
erogeneous, but if the size, shape and distribution of the
included phase are distributed in a statistically random
fashion, then it is possible to consider the material as a
continuum. Ramakrishnan and Arunachalam [29] sum-
marize the general types of existing theoretical models
and cite examples of each method which can be found
in the literature.

One such method, referred to as the composite sphere
model was developed by Hashin [30]. In this method,
a representative sub-volume of a two-phase material is
modeled by a sphere of one material surrounded by a
spherical sheath of a second material. An assemblage
of these layered spheres, of various sizes, is then used to
fill the entire space occupied by the continuum material.
The specific composition of the material is incorporated
into the model by requiring that the relative proportion
of the constituent material in each composite sphere re-
mains the same. Hydrostatic pressure is imposed on the
assemblage under the assumption that each composite

Figure 14 Elastic modulus—composite spheres.

sphere experiences the same pressure. For a two-phase
material, Hashin’s work provides bounds on the bulk
and shear moduli of the composite (see also, Hashin
and Shtrikman [31]). When this model is used with a
porous medium, i.e., when the included phase is a void,
the lower bound collapses to zero and only the upper
bound remains. Using this approach, the upper bound
on the effective Young’s modulus,E∗, is given in terms
of the initial modulus,E0, the initial Poisson’s ratio,ν,
and the porosity,P, by

E∗

E0
≤ 2(7− 5ν)(P − 1)

−14+ 10ν − 13P + 2νP + 15ν2P
(35)

and an upper bound on the shear modulus,G∗, is

G∗

G0
≤ (7− 5ν)(P − 1)

−7+ 5ν − 8P + 10νP
(36)

where G0 is the shear modulus of the non-porous
material.

Ramakrishnan and Arunachalam [29, 32] adapted a
composite sphere modeling approach specifically to
model voids as the included phase. They define a non-
zero radial stress, which develops at the surface of the
composite sphere, and reflects the influence on each
pore by its neighbors. Their results for a modulus,M ,
are of the form

M∗

M0
= (1− P)2

(1+ κmP)
(37)

whereM0 corresponds to the non-porous property,M∗
is the porous property andκm is a parameter. For the
Young’s modulusE, κm is

κm ≡ κE = 2− 3ν (38)
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Figure 15 Shear modulus—composite spheres.

and for shear modulusG, κm is

κm ≡ κG = 11− 19ν

4(1+ ν)
(39)

Comparisons for Young’s modulus and shear modu-
lus, as a function of porosity, as predicted by GMC
and the composite spheres models of Hashin [30] and
Ramakrishnan and Arunachalam [32] are presented in
Figs 14 and 15. The GMC predictions are given for both
the cubic and spherical pores. It is evident from the fig-
ures that Hashin’s composite spheres model, which is
an upper bound, agrees most closely with the GMC

Figure 16 Modulus comparisons for cubic pores.

cubic pore model. Recall that the GMC spherical pore
model agrees most closely with the experimental results
(see Figs 6 and 8). The Ramakrishnan and Arunachalam
model predicts values considerably below the other pre-
dictions and the experimental values.

4.4. Theoretical-experimental comparisons
Comparisons between the Coble and Kingery experi-
mental data for the Young’s modulus of porous alumina
with the predictions of GMC, the minimum solid area
model and the exponential model for cubic, cross, and
spherical pores are presented in Figs 16 to 18. As noted
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Figure 17 Modulus comparisons for cross pores.

Figure 18 Modulus comparisons for spherical pores.

previously, the spherical pore provides the best correla-
tion between theory and experiment with the cross pore
being the next best. In all cases, the GMC and minimum
solid area predictions are essentially identical.

4.5. Nonlinear response
GMC has the added capability of predicting the non-
linear response of porous media. Figs 19 and 20 show
predictions for the nonlinear tensile response of the in-
termetallic nickel compound IC-50 as a function of pore
geometry at a porosity of 0.2 (Fig. 19), and as a func-
tion of porosity for spherical pores withP ranging from

0.025 to 0.4 (Fig. 20). The Bodner-Partom parameters
(see [13]) used to model the visco-plastic response of
the IC-50 are:E= 180 GPa,ν= 0.3, G= 69.24 GPa,
Z0= 370 MPa,Z1= 640 MPa,m= 150, n= 22 and
q= 1.

As indicated in Fig. 19, the results indicate that the
yield stress is a strong function of the pore geometry
with the cross pore exhibiting the lowest yield stress and
the cylindrical pore exhibiting the highest yield stress.
For this specific case ofP= 0.2, the yield stress varies
by as much as 50% with change in pore geometry. As
indicated in Fig. 20, the porosity has an even stronger
influence on the yield stress. The yield stress varies by
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Figure 19 Nonlinear response—pore geometry dependence.

Figure 20 Nonlinear response—porosity dependence.

as much as a factor of three for spherical pores as the
porosity ranges fromP= 0.025 to P= 0.4. Close ex-
amination of the results also indicates that there is much
stronger strain hardening behavior for small porosity.
As the porosity increases, the strain-hardening behavior
approaches the perfectly-plastic case.

5. Conclusions
It has been shown that the generalized method of cells
can be used to study the influence of pore geometry
on the elastic and inelastic response of porous me-
dia. Periodic microstructures with four distinct pore

geometries were studied and the results for effective
elastic properties were compared with several other
available models and some experimental results. Pre-
dictions for the inelastic response of porous media were
presented for tensile loading, as a function of pore ge-
ometry and pore volume fraction, with the inelastic be-
havior of the bulk material modeled using a unified
visco-plasticity theory. All results were presented for
discrete pore shape and discrete porosity. It was shown
that pore geometry can have a significant influence on
both elastic and inelastic response, that pore geometry
can be associated with parameters of other available
models, and that the generalized method of cells is an
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efficient, flexible and reliable method of analysis for
such problems. GMC modeling has provided a corre-
lation between pore geometry and the b parameter of
exponential models for effective elastic properties. It
has also been shown that GMC, the exponential model
and the minimum solid area models are in good agree-
ment for a given pore geometry. Comparison of the pre-
dictions with experimental results for aluminum oxide
and a sintered glass indicates that modeling the porosity
as spherical pores or cross pores provides good corre-
lation between theory and experiment. Finally, it has
been shown that GMC can be used to model the in-
elastic response of porous media as a function of pore
geometry and pore volume fraction and that the yield
stress of the porous medium is a strong function of both
characteristics, whereas the strain-hardening response
is only a strong function of the porosity.
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