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Influence of pore geometry on the effective
response of porous media
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The generalized method of cells (GMC) is used to study the influence of pore geometry on
the effective elastic properties and inelastic response of porous materials. Periodic
microstructures with four distinct pore geometries are studied and the results for effective
elastic properties are compared with several other available models and experimental
results. Predictions for the inelastic response of porous alumina are presented for tensile
loading, as a function of pore geometry and pore volume fraction, with the inelastic
behavior of the bulk material modeled using a unified visco-plasticity theory. All results are
presented for discrete pore shape and discrete porosity. It is shown that pore geometry can
have a significant influence on both elastic and inelastic response, that pore geometry can
be associated with parameters from other models, and that the generalized method of cells
is an efficient, flexible and reliable method of analysis for such problems. © 7999 Kluwer
Academic Publishers

1. Introduction spherical) and then develop analytical solutions for the
The subject of porosity has received renewed attenproperties as a function of the pore volume fraction.
tion in recent years. This is true for ceramics, metaldn contrast, the materials community has tended to ob-
and composites. Reasons for studying porosity includéain experimental results for the properties as a function
the fact that materials are often porous as the result off porosity and then found the “best fit” curve where
processing, that naturally occurring materials such athe parameters are associated with the pore geometry
wood and bone are porous, and that advantageous engir method of fabrication. It is also interesting that a re-
neering properties may be realized by taking advantageiew of the papers in the mechanics literature and those
of porosity. Possible advantageous properties might inin the materials literature indicates that the interaction
clude specific stiffness and strength, improved thermabetween the two communities is somewhat limited.
conductivity, and resistance to crack growth. Materials The majority of mechanics papers directed to-
may be porous because the fabrication process resultswiard mechanical properties of porous media are con-
pores between particles that were not fully consolidatedterned with elastic properties (e.g., Budiansky [4],
or they may be porous by designin order to affect a speMacKenzie [5], Nemat-Nasser and Taya [6]). Previ-
cific property. Materials that are porous by design areous studies on inelastic response are those by Chu and
often referred to as cellular solids. Porous media typi-Hashin [7] who used the composite spheres model to
cally have lower percent porosity than cellular solids.study the response of porous steel under dilatational
For all materials, it is desired to know the mechanicalloading. Carroll and Holt [8] and Butchest al. [9]

and physical properties as a function of the type(s) otonsidered compressibility and dynamics effects, and
porosity (pore geometry) and the degree of porosity exAboudi [10] used the original method of cells to study
pressed as a volume fraction or as relative density, i.eipelastic normal, dilatational and shear response of
the ratio of the density of the porous media to that ofporous, elastic perfectly-plastic and elastoplastic work-
the nonporous solid. The focus of the present paper ibardening solids. All of the above papers are concerned
directed toward porous media; the methods of analysisyith spherical pores (or approximations to spherical
however, would also be appropriate for cellular solids.pores in the case of the method of cells).

Recent review articles on porous media include those The goal of the present work is to assess the applica-
by Rice [1, 2]. Cellular solids are reviewed in the book bility of the generalized method of cells (GMC) (Paley
by Gibson and Ashby [3]. It is interesting to note that & Aboudi [11], Aboudi [12]) for calculating the effec-
there have been two fundamental approaches to thiéve elastic properties and inelastic response of a porous
study of porous media. These approaches can be dinaterial as a function of pore geometry and percent
vided into those of the mechanics community and thosgorosity. The four pore shapes selected for considera-
of the materials community. The mechanics communitytion are: cylinder, cube, sphere and cross. Comparisons
has tended to consider a specific shape pore (most oftenill be made with previously published experimental
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data as well as with several other theoretical models. Fa2. The generalized method of cells
the purpose of comparison, GMC is used to predict thérhe generalized method of cells (GMC) is a computa-
effective behavior of aluminum oxide, AD3, a porous tionally efficient and robust micromechanics analysis
ceramic whose effective elastic behavior is well docu-method for heterogeneous materials including porous
mented in the literature, and a glass that was die-pressededia and composites. Thermal, mechanical (stress or
and sintered from a glass powder or frit. Predictions forstrain control) and thermo-mechanical load histories
nonlinear response are presented for the intermetallican be imposed and a variety of constitutive laws for
compound IC-50 (NJAI), a nickel aluminide (Ni-Al  elastic and/or inelastic response of the constituents may
23., Hf.5, B.2) at %. be utilized. The constitutive model used for inelastic re-
All results presented in this paper are for periodicsponse in the present study is the Bodner and Partom
structures with discrete pore shape, stacking arrangg13] viscoplastic model. GMC is an extension of the
ment and porosity, and it is assumed that these parameriginal method of cells (Aboudi, [14]) which was used
ters do not change during loading. However, itis impor-previously to study the inelastic response of porous
tant to note that the methodology presented has mucimedia for one specific pore geometry (Aboudi [10]).
broader capabilities. It is possible to model any shapeSince the CTE of a porous, but otherwise homogeneous,
pore that can be described in the cartesian geometry ehedium is not influenced by porosity, thermal effects
the unit cell. Different stacking arrangements and com-are not considered in this paper.
binations of pore shapes can be modeled as long as theGMC considers a material that possesses a periodic
microstructure is periodic at some level or a statisticalstructure such that a repeating, representative volume
approach is employed. In addition, the model can beslement can be identified in the form of a unit cell.
extended to changing pore structure (shape and stack: two-dimensional representative unit cell is shown
ing arrangement) as a function of load history throughin Fig. 1 and the three-dimensional unit cells to de-
the incorporation of finite deformation effects. scribe each of the four pore geometries considered in
this paper, cylinder, cube, cross and sphere, and shown
in Figs 2 to 5.
! The 2-D representative repeating cell consists of
- - Ng x N, subcells whereas the 3-D representation con-
X2 sists ofN, x Ng x N, subcells. Each one of these sub-
cells can be occupied in general by any viscoplastic
B=Ng hNB T material. The constitutive law of such a material can be
written in the form

B,y A oc=Ce—¢") (@H)

whereo is the stress vector, and ¢' are the total
and inelastic strains, respectively, a@dis the elas-
tic stiffness matrix of the material. The subcells corre-

B=2 h sponding to pores were represented as a linearly elas-
=1 hy _'_ tic material with very small Young’s modulug, and
x v=1vy=2 =N, relatively large Poisson’s ratia, resulting in a very
! small shear modulus through the isotropic relationship
P X3 G =E/2(1+ v).
The constitutive law was represented as a relationship
Figure 1 GMC representative repeating unit cell for 2-D. between the rates of the field variables for use with the
b
a
b
b a b
Loading
Direction

Figure 2 Cylindrical pore.
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Figure 3 Cubic pore.
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Figure 4 Cross shaped pore.

b
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Figure 5 Spherical pore.

Using (4), (3) can be written:
Cila = A8ij 8 + 1 (Sikdjt + 8 8ji)

) Smnéin Sj
Stért SpgSpq

(5)

wherei andpu are the Lare elastic constants, arag
is the Kronecker delta.

The basic micromechanical GMC analysis consists
of four steps as follows:

1. Identification of the repeating unit cell.

2. Definition of the macroscopic average stresses
and strains from the corresponding microscopic quan-
tities (homogenizationReferring to Fig. 1 (for the 2-D
case), we have:

Ng N

_ 1 B 4

o= > > hgl,a®V (6)
p=ly=1
Ng N

_ 1 B 4

e=i > > hgly &) )
B=1ly=1

wheres®7) ands®?) are the average stress and strain
in the subcell §v).

3. Imposition of continuity of displacements and
tractions at the interfaces between the subcells, as well
as between the repeating cellhese continuity condi-
tions establish, in conjunction with equilibrium within
each subcell, the relationships between the microscopic
total and inelastic strains with the macroscopic strains
via the mechanical and inelastic concentration tensors
(localization). It can be shown (Paley and Aboudi [11])
that the strains in the subcells are given in terms of the
macroscopic strains and the subcells inelastic strains in
the form:

sBY) — ABV)g 4 D(ﬁy)sé (8)
where A®7) and D7) are the appropriate concentra-

tion tensors, and', are the inelastic strains in all sub-
cells.

viscoplastic model. This tangent formulation can be 4. Derivation of the resulting overall (macroscopic)
established by multiplying and dividing the inelastic Constitutive equation of the multi-phase medike re-

terms in (1) by the scalas wheres is the deviatoric

part ofo. The resulting constitutive law is

6 =CVP¢

sulting inelastic constitutive law is given by:
o=B*—¢&") ©)

In this constitutive equatio* is the effective elas-
tic stiffness tensor of the material which is given in a

whereCVP denotes the instantaneous stiffness tensog|gsed-form manner.
of the viscoplastic phase. It is given by:

VP _ ..
Cijkl = Ciju —

y
Cijabéap
Stért

Ng N
1 B 4
B* — — hal. C®BY) pBY) 1

The inelastic strain tensor has the form:

In the special case of an isotropic, viscoplastic material,

the termCij éi'd can be written in terms of a flow rule

function, A, in the form:

Cijk By = Cijxi ASa = 2uAS;

_B*—l Ng N,
g = - Z hﬂIyC(ﬁy)(D(ﬂy)gé _g'(ﬂy))
p=1ly=1

(11)
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Once the strain concentration tensors, mechadigal ~ Similarly, the maximum volume of a cusp shaped pore
and the inelasti®#*), have been determined, it is pos- in the unit cell, which results from the stackingsgfhe-
sible to establish the microscopic stress in the subceliical particles the reverse of spherical pores, is 0.4764.
in the form: The three dimensional version of the generalized
methods of cells uses rectangular subcells to describe
") = CON[ABg 4 DBVl —g1B]  (12)  each pore shape (see Figs 2 to 5), but since it calcu-
lates average values across the pore boundaries, the

For elastic response, the stresses are: corners in the subcells do not produce stress concen-
) )= trations or singularities. This means that GMC may not
o) = Qg (13)  ‘see’ a cube when the pore is drawn as a cube; how-

) ) ) ever it does distinguish between shapes based on rel-
whereQ'’")is the mechanical stress concentration tenytive dimensions. General characteristics of real pore
sor given by shapes were included when possible in the GMC de-

_ scriptions. For example, a cubic pore could physically
By) — cBy) pA(BY) 1 . . .
Q¥ = C¥r AT B (14)  extend through the entire range of porosity, and in the

It is also possible to establish the instantaneous con(Ease of our spherical pore, a“cubical” approximation to
2 C P : : a sphere was constructed which reached its maximum
stitutive law that governs the overall inelastic respons

by employing the corresponding instantaneous laws o; olume at0.5236. (which is the maximum f(_)r a sphere
the constituents given by (2) directly in GMC. Alterna- ina cube). The cross shaped pore, which might approx-
tively, one can multiply and divide the inelaétic terms Imate a cuspeq shaped pore, does not match the corre-
in thé rate form of (9) by the scalae wheres is the sponding faximurm volum(_e for the pores Wh-ICh result
deviatoric part o This readily provides the follow- fr_om packing s_pherlcal particles. More com plicated d_e—
ing relation between the rates of the total and inelasti signs are required to produce a symmetric shape which

strains via the overall instantaneous stiffness tensor 'has its maximum pore volume fraction of 0.4764. It is
" notclearwhich shape, in arectangular geometry, would

5= BVPr (15) best approximate a cusp shaped pore. (See &iah
[15], for a discussion of variations in cusp shapes.) The
cross shaped pore is used because of its simple geo-
metric shape and because it has a maximum porosity
Biﬂjfabg'abgd between that of the cubic and spherical pores, which
—— (16)  makes it useful in comparison. Thus, these pore shapes
Stért are intended to span a range of shapes, but not specifi-

The constitutive law (9) can be employed to predict thec@lly model their namesakes. .
nonlinear behavior of porous media from the knowl-  The cylindrical pore is not a pore in the usual sense,

edge of the material properties of the medium and takbut rather a |Ong Cylin_drical .VOid. The three remaining
ing the pore to have near zero stiffness. pores are traditional inclusions. The three shapes, la-

beled cube, cross and sphere, are used to approximate

various void shapes which occur either naturally, as a
3. Pore geometry o _ result ofincomplete consolidation during processing, or
Since GMC includes a description of the micro-geo-jntentionally, in a process designed to produce a porous
metry of a subvolume of the material, it is possible ymaterial. The regular distribution of pores throughout
to describe various pore shapes in some detail. Therge matrix material approximates a material that is sta-
were two objectives in the selection and design of POrgistically homogeneous and effectively isotropic. The

shape. First, the proportions of each shape had to remajg pore shapes as modeled in GMC are described in
constant even as the porosity changed. This provideghe following.

a definition of each shape, independent of the poros-

ity, and made it is possible to examine how changes

in the shape of the pore alone affected the properties

of the porous material. The second objective was t®B.1. Cylindrical pore

maintain the physical sense ofthe pore, keepingin mind’he cylindrical pore, with a square cross section
that there is a limiting value of porosity for each pore (Fig. 2), is used to approximate the voids which oc-
shape, i.e., when the outer edge of a pore is extended tmr during the consolidation of a layered material. The
the sides of the unit cell. This can be seen in the case ahain axis of the cylinder is aligned in the loading di-
perfectly spherical pores in a square packing arrangeection, and the pores are arranged in a square stacking
ment. In the limiting case, the matrix material would sequence. The resulting material is effectively trans-
fill the cusp shaped areas between the spherical poregersely isotropic. This pore is described in GMC by a
At this porosity, the spheres would touch each other atinit cell divided into 9 subcells. Each subcell runs the
one point on each face of the unit cell, and the poreslepth of the unit cell. The subcell that lies along the
would be considered a continuous phase. Beyond thisain axis of the cylinder is the void. The remaining
porosity, the spherical shape of the pore would be lossubcells are of the non-porous material.

as neighboring pores merge. Mathematically, the max- In this case, the pore volume fraction can be calcu-
imum pore volume fraction which can be achieved bylated by the relative area of the pore across the face
spherical poresmaintaining the pore shape, is 0.5236. of the unit cube. This area of the unit cell is normal-

where

*VP _ p*
BijkI — Bijkl
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ized to one, and the pore volume (area) fraction can bd. Results and discussion
expressed as 4.1. Comparison with experimental results
5 Comparison with experimental data previously pre-
Py = a (17)  sented in the literature is invariably limited by the type
Pf tests conducted and the assumptions made in evaluat-
ng the data acquired. Beam deflection, tension, torsion,
ydrostatic loading, resonant frequency and wave pro-
pagation methods have all been used. Data have been
acquired as deflections, strain gage measurements, light
reflection and ultrasonic velocities. Invariably it is as-
sumed that the porous material is homogeneous and
3.2. Cubic pore isotropic for the purpose of extracting material pro-
The GMC unit cell for the cubic pore (Fig. 3) is divided perty values from the theory associated with each type
into 27 subcells, 3 3x 3. The center subcell (the pore) of test. The following comparisons are made with these
is a cube, with dimensiong, x a x a. The dimension caveats noted.
a will be referred to as the characteristic dimension.  The effective elastic properties were predicted for
The volume of the unit cell is normalized to one, soporous alumina (AlOs) using the bulk properties:
that the porosityPeube iS given by E =386 GPaG =163 GPa, and =0.19 as input to
3 GMC. Results for the effective Young's modulus,
Peube = & (18)  effective Poisson’s ratia;, and effective shear modu-
lus, G, for cylindrical, cubic, spherical and cross pores
are presented as a function of porosRy,in Figs 6-8.
The Young's modulus results (Fig. 6) and the shear

wherea is the dimension of the square cross-sectiona
area. This pore can increase in size to fill the unit cub
exactly so the pore volume fraction can range from
0<Py <1

P = 1is, of course, a degenerate case.

The second length is defined las= (1 — a)/2. In the
limiting case wherd — 0, and & — 1), thus

0<Pype<1 (19)  modulus results (Fig. 8) include comparison with the
experimental data of Coble and Kingery [16] who mea-
P =1 is the degenerate case. sured Young’s modulus using transverse bending tests

and shear modulus using torsion tests. Beam deflec-
3.3. Cross pore tions were measured in the bending tests and strains

This pore is modeled by a unit cell divided into 125 Wereé measured in the torsion tests utilizing a light

subcells, 5¢ 5 x 5. The center layer of subcells models SOUrce reflected from sapphire mirrors mounted on the
the pore as a cross with equal lengths for each of thé@mMple. _ .

legs and the center (Fig. 4). The pore is symmetric about C0Ple and Kingery also presented data for Poisson’s
all three axis, forming a three dimensional cross, of&lio, but their values were based upaveragedata

cruciform shape. The unit cell is again normalized to@"d: as a result, the Poisson’s ratio for zero porosity
unit volume, thus the porosity is given by (v=0.27) was 50% higher than the value for isotropic

responsei=0.18). Because of this the reported ex-
Peross= 7a° (20)  perimental data are not presented in Fig. 7. Coble and
Kingery did report a 50% decrease in Poisson’s ratio as
The second length is given liy= (1 — 3a)/2. Inthe  porosity increases from 0.0 to 0.5.
limiting case wherd — 0, (& — 1/3), the porosity is  For the theoretical predictions, the Young’s modulus
within the range and Poisson’s ratio were predicted directly from GMC
and the shear modulus was obtained using these val-
0 = Peross = 0.295 (21) ues and the isotropic relationship=E/2(1+ v). In
all cases, results are presented only for porosities in the
range possible for each particular pore shape as dictated
by the GMC approximation. When applying GMC to
porous materials it is necessary to assign material prop-
3.4. Spherical pore erties to the pore. For all results presented in this paper
This pore (Fig. 5) is modeled by a unit cell divided into the pore properties were taken to e=0.001 MPa,
343 subcells, ¥ 7x 7. Again a characteristic dimension G =0.0004 MPa and = 0.25. These values insured
ais usedto define the pore dimensions and proportionghat the elastic stiffness;; are very small for the pore.

Equality holds on the right-hand side of (21) when the
pores from adjacent unit cells are in contact.

The resulting pore volume fraction is Itis evident from the figures that an increase in poro-
3 sity results in a degradation in all three elastic proper-
Psph = 65.452 (22) ties, with one exception, Poisson’s ratio for cylindrical

With the unit cell normalized to volume 1, the second pores (Fig. 7). The resuI'Fs cI_earIy are alsq a funct_ion
length isb = (1— 5a)/2, and for this pore shape, in the of pore geometry. The cylindrical pore predictions give
limitasb — 0, (a — 1/’5) and thus ' the smallest degradation of property and the predictions

based upon the cross pore shape result in the largest
0 < Psph < 0.5236 (23) degradation. The cubic and spherical pore predictions
are intermediate, with the spherical pore always ex-
Again, equality on the right-hand side of (23) holds hibiting more degradation than the cubic pore. There
when pores from adjacent unit cells are in contact.  are significant differences in the predictions (more than
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Figure 6 Effective Young's modulus for porous 4Ds.
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Figure 7 Effective Poisson’s ratio for porous ADs.

100% in some cases) depending upon the pore geomperosity primarily in the form of small, nearly spherical
try. It is also evident that whereas the cylindrical porepores. The shear modulus comparisons in Fig. 8 indi-
exhibits a linear dependence on porosity, the depenzate good correlation with the spherical pore for small
dence is nonlinear for all other pore shapes. The Cobl® and even better correlation with the cross pore for
and Kingery experimental results for Young’s modulus0.15 <P > 0.246.

compare most favorably with the predictions for spher- The independence of Poisson’s ratio on porosity for
ical pores. There is excellent agreement between thine cylindrical pore geometry (Fig. 7) is a special case
spherical pore predictions and experimental values um which the effective property is constant and equal
to a porosity of 0.4. Above® = 0.4, the agreement is to the property of the matrix. This same result can be
good but not excellent. This agreement between theorghown directly from Hill’s relations (Hill [18]) for ef-
and experiment for spherical pores is consistent witlfective elastic properties of two-phase materials with
the indication in Ashby and Jones [17] that densifi-one phase being a void (Benveniste [19]). The predicted
cation of ceramic powder through sintering results indecrease in Poisson’s ratio as porosity increases for the
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Figure 8 Effective shear modulus for porousAs.

other pore shapes is consistent with the experimentdknsion test. The authors have not found such a set of
results of Coble and Kingery [16]. As mentioned pre-results in the literature.

viously, they reported a 50% decrease in Poisson’s ratio Walshet al. [22] obtained experimental results for
for P=0.5. Greeret al.[20] reported only a decrease bulk modulus as a function of porosity by measuring
of approximately 30% for porous aluminaRt=0.5.  compressibility on a series of glass specimens. Differ-
Ashkinet al.[21] reported a small increase in Poisson’sent porosities were produced by varying the sintering
ratio of porous silica as porosity increased fréa=0  temperature for sintered glass powder. The authors re-
to P =0.5 and then a large increase in Poisson’s raported that microscopic inspection of the specimens
tio for higher porosity. Their results were based uponafter sintering indicated that the pores were prima-
measurement of longitudinal and shear wave velocifily spherical, with some pores “slightly ellipsoidal”.
ties and the isotropic material property relationship. ItYoung’s modulus,E, of the bulk glass was deter-
would appear that measurement of the dependence afined to beE =10.875x 10° psi and Poisson’s ra-
Poisson’s ratio on porosity requires direct and accurattio v =0.23. Fig. 9 shows that the GMC predictions
measurement of the axial and transverse strains in gpherical pores) for the bulk modulus as a function of

50 .0 + 4 + ! + } Il ! ) I + } ; L : |

40.0

v Walsh et al.,

30.0 — GMC

(GPa) 20.0

10.0

00 0200 0400 0.600  0.800 1.00

oo L. . |

P

Figure 9 Effective bulk modulus for porous glass.
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Figure 10 Young’s modulus: GMC and exponential.

porosity are slightly lower than the measured values, GMC predictions for the Young’'s and shear mod-
but generally agree with the experimental results oveuli were fit to curves of the exponential form using a
the range for which predictions are possible. Comparimodified least squares method to determinebtiialue
son of the bulk modulus in this case represents a direaorresponding to a best fit for the three included phase
comparison of theory and experiment without the neegore models. These curves and thealues are shown
for any assumptions as to the isotropy of the material o Figs 10 and 11. Note that the spherical pore results,
the value of other material constants such as Poissonls=2.576 for E andb = 2.405 for G correspond very
ratio. well with the value of 2.73 identified by Spriggs for slip
casting and sintering, whereas the cross pore values,
. . . b =3.209 for E andb = 2.550 forG, are more consis-
4.2. Comparison with empirical models tent with Spriggs’ value for cold-pressing and sintering.

4.2.1. Exponential form - : e et ;
T Iy, P h
Spriggs [23] proposed that the effect of porosity on the ypically, Poisson's ratio has not been described by an

ffoct] lasti duli of . al d b exponential relationship. However, if the porous ma-
effective elastic moduli of ceramic materials could beyaia| is assumed isotropic, then t@&= E/2(1+ 1)

modeled using an exponential expression of the typ?elationship can be used to determine
suggested by Duckworth [24] and Knudsen [25] as & ¢ s fyrther noted that the results of this curve fitting
modlf!catlon on a form use_d by Ryshkewitch [26] to he GMC results to exponential forms, giveparame-
describe the effect of porosity on strength. The gener r values that are very similar f@& andG. If E andG

. . -
fﬁrm of the eq“a?"}'? for an effecuyel mfo?]ull]PA; of vary in the same manner with porosity and the porous
the porous material is an exponential of the form material is isotropic, then Poisson’s ratio is indepen-
dent of porosity. This is consistent with the results of

* __ —bP
M* = Moe (24) Ashkinet al.[21] discussed previously.

whereMg is an elastic modulus of the non-porous ma-
terial, P is the volume fraction of porosity, almlis an 4 2 o p1inimum solid area model

empirical constant. This relation has provided a gooGjce [1, 2] associated the effective properties of porous

appro.x.lmat.lon for effective propertles at Iowe.r range of o gia with pore shape and packing arrangement by not-

porosities, i.eP < 0.4 (see Spriggs [23], Spriggs and jq that these geometric characteristics are related to the

Brissette [27],.a_nd Rice [l.])' minimum area that transfers load. For one-dimensional
After examining experimental data on polycrys- |nading, this area is the minimum solid area normal

talline alumina from several investigators, Spriggs [23]i5 the stress. Under the assumptions of the minimum

observed thgt the constamtranges from 4.(?8 to 4.35 solid areamodel, the rat */ Mo, equals the minimum

for hot-pressing; 3.44-3.55 for cold-pressing and sinyjig area (MSA) for a given pore shape and packing

tering; and ~ 2.73 for slip casting and sintering. Since rrangement, i.e.

different processing techniques can be associated witﬁ ’

different pore structures, this suggests a connection be- M*
tween effective moduli, pore shape and volume frac- = MSA (25)
tion, and processing technique. 0
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Figure 11 Shear modulus: GMC and exponential.

Because the shapes of the three inclusion pores (cub&hese equations are similar in form to those discussed
cross and sphere) are clearly defined, it is possible tby Rice [26]. Itis clear from Equations 25, 27,29 and 31
develop exact minimum surface area models for theséhat the minimum solid area at a fixed porosity is largest
three pore shapes. Specifically, for loading along a prinfor the cubic pore and smallest for the cross shaped
ciple axis, the minimum solid area is the cross sectiorpore. Also the rate of change in solid area (decreasing)
of the unit cell less the largest cross section of the porewith respect to increasing porosity is the greatest for
This minimum solid area modeling is applied to the the cross shaped pore.
GMC representation of the three inclusion pore shapes Fig. 12 shows that the GMC predictions for elastic
as follows: modulus are in excellent agreement with those of Equa-
Cubic pores The minimum solid area (MSA) for the tions 27, 29 and 31 for the three inclusion pore shapes.
cubic pore is the area assigned the matrix material in the Rice [1, 28] demonstrates that Spriggs’ exponential
center cross section of the unit cell. This area is givermodel provides a good approximation to the solid area
by model.
The connection between the minimum solid area
MSAgpe= 1— a® (26)  model and the exponential form can be established by
noting that the first term two terms of a linear expansion
andwitha = P*/3from (18), this can be writteninterms of the exponential form can be written as
of porosity P as
M *

_bP
MSACUbe: 1_ P2/3 (27) Mo =€ ~1-—DbP (32)

Cross shaped poreSimilarly, the minimum solid area which is valid forb P « 1.
for the cross shaped pore is Each of the minimum solid area relations (27), (29)
and (31) can be rewritten in the same form as (32), i.e.
MSAgross= 1 — 522 (28)

M* o
and with a=(P/7)Y2 from (20), given in terms of Mo 1- (W)P (33)
porosity P as
with « =1.0, 1.15, 1.36 for the three different pore
MSAgross~ 1 — 1.36P%/3 (29)  shapes. This suggests thatédP?3 small enough, this
can also be written as an exponential, i.e.
Spherical poresFinally, for the spherical pore

M*
M~ e BPP
MSAsn~ 1 — 18882 (30) Mg € (34)
which, witha = (P/65.45)1/2 from (22) becomes In this case though, the paramef{P) = «/PY3 is
not a constant but depends on the porosity. For small
MSAsph=1— 1.15p?/3 (31) changes in porosity this can be further approximated
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Figure 12 Comparison of minimum solid area model with GMC.
400. : } + } + } + }
300. + \ —o— GMC cube T
- 8- MSA; 386.0(1-1.0P%3%)
«-¥... 386.0g722%
E
200. < T
(GPa)
100. < T
0.0 ’ : : : : : : : ;
0.0 0.200 0.400 0.600 0.800 1.00
P

Figure 13 Comparison of GMC, exponential and minimum solid area for cubic pore.

by the exponential form with a constant value of the Fig. 13 shows that there is excellent correlation be-
parameteb. tween the minimum solid area model and GMC over
When comparing pores of different shapes at varioushe full range of porosity. The exponential curve com-
porosities, a higher value dfimplies that the support- pares reasonably well, however, at higher porosities the
ing minimum solid area decreases more rapidly withexponential curve diverges from the other two models.
increasing porosity. General results, predicted by thé his is consistent since the exponential approximation
minimum solid area model and approximated by theis only good for smalb P values and was proposed only
exponential form, which are applicable to this work, for porosities below about 0.4.
are that spherical pores in a cubic stacking arrange- Rice [2] also examined a wide range of experimental
ment will have & ~ 3, (this corresponds to our spheri- data from the literature with the goal of determining
cal pore), solid spheres in a cubic stacking arrangemeritends that are valid over several sets of data. When
haveb ~ 5 (this might be a limiting case of the cross possible, he used thevalue calculated by the original
pore) and cylindrical pores aligned in the loading di- investigators. In most cases data were obtained graphi-
rection haveh ~ 1.4. cally andb values were fit visually. For ceramics, Rice
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observed the following: (a) the average valudaiver  sphere experiences the same pressure. For a two-phase
all processing techniques s ~ 4; (b) hot pressing, material, Hashin’s work provides bounds on the bulk
iso-pressing and colloidal pressing give highealues and shear moduli of the composite (see also, Hashin
than cold-pressing. This is attributed to the increase@nd Shtrikman [31]). When this model is used with a
packing densities achieved by the former processingorous medium, i.e., when the included phase is a void,
techniques; higheb values are associated with more the lower bound collapses to zero and only the upper
densely packed materials. bound remains. Using this approach, the upper bound

on the effective Young’s modulug*, is given in terms

of the initial modulus Eg, the initial Poisson’s ratioy,

4.3. Comparison with theoretical models and the porosityP, by
Most of the existing analytic models for the effective
properties of porous materials have been developed as E* _ 2(7—5v)(P —1) (35)

a special case of the problem of an inclusion phaseina Eg = —144 10v — 13P 4+ 2vP + 152P

matrix. A representative element of a two-phase mate-

rial is analyzed and the results obtained are extended @nd an upper bound on the shear modu@rs,is

the continuum material, attempting to take into account

the distribution of the included phase and interactions G __ (@=5)(P-1) (36)

between included phases. Two phase materials are het- Go ~ —7+5v—8P+ 10wP

erogeneous, but if the size, shape and distribution of the

included phase are distributed in a statistically randomwhere Go is the shear modulus of the non-porous

fashion, then it is possible to consider the material as aaterial.

continuum. Ramakrishnan and Arunachalam [29] sum- Ramakrishnan and Arunachalam [29, 32] adapted a

marize the general types of existing theoretical modelsomposite sphere modeling approach specifically to

and cite examples of each method which can be founéhodel voids as the included phase. They define a non-

in the literature. zero radial stress, which develops at the surface of the
One such method, referred to as the composite spheg®mposite sphere, and reflects the influence on each

model was developed by Hashin [30]. In this method pore by its neighbors. Their results for a moduli,

a representative sub-volume of a two-phase material igre of the form

modeled by a sphere of one material surrounded by a

spherical sheath of a second material. An assemblage M* (A- P)? 37)

ofthese layered spheres, of various sizes, is then used to Mo  (1+kmP)

fill the entire space occupied by the continuum material.

The specific composition of the material is incorporatedwhereMg corresponds to the non-porous propekty,

into the model by requiring that the relative proportionis the porous property and, is a parameter. For the

of the constituent material in each composite sphere re¥oung’s modulusE, km, is

mains the same. Hydrostatic pressure is imposed on the

assemblage under the assumption that each composite Km=kg=2—3v (38)
400. ; ! ; f : J ; '
g
300. < —o— GMC sphere 4

—&— GMC cube
——— Hashin CSA
—v— R & A model

200. -+ 4
(GPa)

100. < 4

0.0 / } ' } ' t ‘ T —
0.0 0.200 0.400 0.600 0.800 1.00

Figure 14 Elastic modulus—composite spheres.

1605



200. ‘ }

[«
150. ¢
G
100. <
(GPa)
500 <
0.0 ' !

—o— GMC sphere -+
—&— GMC cube

——— Hashin CSA
—v R & Amodel

] " [l

0.200

Figure 15 Shear modulus—composite spheres.

and for shear modulus, «, is

11— 1%

==y

Comparisons for Young's modulus and shear modu-

(39)

0.400 0.600 0.800 1.00

cubic pore model. Recall that the GMC spherical pore
model agrees most closely with the experimental results
(see Figs 6 and 8). The Ramakrishnan and Arunachalam
model predicts values considerably below the other pre-
dictions and the experimental values.

lus, as a function of porosity, as predicted by GMC

and the composite spheres models of Hashin [30] and.4. Theoretical-experimental comparisons
Ramakrishnan and Arunachalam [32] are presented i@omparisons between the Coble and Kingery experi-
Figs 14 and 15. The GMC predictions are given for bothmental data for the Young’s modulus of porous alumina
the cubic and spherical pores. It is evident from the fig-with the predictions of GMC, the minimum solid area
ures that Hashin’s composite spheres model, which isnodel and the exponential model for cubic, cross, and
an upper bound, agrees most closely with the GMGspherical pores are presented in Figs 16 to 18. As noted

400. - }
300.
E
200. <
(GPa)
100. <
0.0 ' !

—a— GMC cube +
§ C&Kdata

- © — MSA: 386.0(1-1.0P%?)

<-¥.... Exp: 386.0e722%°

.

......

0.0 0.200

Figure 16 Modulus comparisons for cubic pores.
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Figure 17 Modulus comparisons for cross pores.
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Figure 18 Modulus comparisons for spherical pores.

previously, the spherical pore provides the best correlad.025 to 0.4 (Fig. 20). The Bodner-Partom parameters
tion between theory and experiment with the cross porgsee [13]) used to model the visco-plastic response of
being the next best. In all cases, the GMC and minimunthe 1C-50 areE =180 GPay =0.3, G =69.24 GPa,

solid area predictions are essentially identical. Zo=370 MPa,Z; =640 MPa,m=150,n=22 and
g=1.
As indicated in Fig. 19, the results indicate that the
4.5. Nonlinear response yield stress is a strong function of the pore geometry

GMC has the added capability of predicting the non-with the cross pore exhibiting the lowest yield stress and
linear response of porous media. Figs 19 and 20 showhe cylindrical pore exhibiting the highest yield stress.
predictions for the nonlinear tensile response of the inFor this specific case & = 0.2, the yield stress varies
termetallic nickel compound IC-50 as a function of poreby as much as 50% with change in pore geometry. As
geometry at a porosity of 0.2 (Fig. 19), and as a func4indicated in Fig. 20, the porosity has an even stronger
tion of porosity for spherical pores withranging from  influence on the yield stress. The yield stress varies by
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Figure 20 Nonlinear response—porosity dependence.

as much as a factor of three for spherical pores as thgeometries were studied and the results for effective
porosity ranges fron> =0.025 toP = 0.4. Close ex- elastic properties were compared with several other
amination of the results also indicates that there is muclvailable models and some experimental results. Pre-
stronger strain hardening behavior for small porosity.dictions for the inelastic response of porous media were
As the porosity increases, the strain-hardening behavigsresented for tensile loading, as a function of pore ge-
approaches the perfectly-plastic case. ometry and pore volume fraction, with the inelastic be-
havior of the bulk material modeled using a unified
visco-plasticity theory. All results were presented for
5. Conclusions discrete pore shape and discrete porosity. It was shown
It has been shown that the generalized method of cellthat pore geometry can have a significant influence on
can be used to study the influence of pore geometrypoth elastic and inelastic response, that pore geometry
on the elastic and inelastic response of porous meean be associated with parameters of other available
dia. Periodic microstructures with four distinct pore models, and that the generalized method of cells is an
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efficient, flexible and reliable method of analysis for 9.

such problems. GMC modeling has provided a corre-

lation between pore geometry and the b parameter of°- =
11. PALEY andABOUDI, ibid. 14 (1992) 127.

12. J. ABOUDI, in “Damage in Composite Materials,” Vol. 3, edited

exponential models for effective elastic properties. It
has also been shown that GMC, the exponential model

and the minimum solid area models are in good agreets.

ment for a given pore geometry. Comparison of the pre-
dictions with experimental results for aluminum oxide 4
and a sintered glass indicates that modeling the porosity

as spherical pores or cross pores provides good corrgg,

lation between theory and experiment. Finally, it has

been shown that GMC can be used to model the inl7.

elastic response of porous media as a function of pore
geometry and pore volume fraction and that the yield,

characteristics, whereas the strain-hardening response
is only a strong function of the porosity.
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